Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the : “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5For example, the lowest common ancestor (LCA) of nodes
2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition. 来源: <>
思路,先判断入口是否有非法输入。
1 如果某一个root==p || root == q,那么LCA肯定是root(因为是top down,LCA肯定在root所囊括的树上,而root又是p q其中一个节点了,那么另外一个节点肯定在root之下,那么root就是LCA),那么返回root
2 如果root<min(p, q),那么LCA肯定在右子树上,那么递归
3 如果max(p, q)<root,那么LCA肯定在左子树上,那么递归
4 如果p<root<q,那么root肯定为LCA
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root==p||root==q)
return root;
if(p->val>q->val)
swap(p,q);
if(root->val > p->val && root->val < q->val)
return root;
TreeNode *node;
if(root->val > max(p->val,q->val))
node=lowestCommonAncestor(root->left,p,q);
if(root->val < min(p->val,q->val))
node=lowestCommonAncestor(root->right,p,q);
return node;
}
};